The Balance of Expression of Dihydroflavonol 4-reductase and Flavonol Synthase Regulates Flavonoid Biosynthesis and Red Foliage Coloration in Crabapples
نویسندگان
چکیده
Red leaf color is an attractive trait of Malus families, including crabapple (Malus spp.); however, little is known about the molecular mechanisms that regulate the coloration. Dihydroflavonols are intermediates in the production of both colored anthocyanins and colorless flavonols, and this current study focused on the gene expression balance involved in the relative accumulation of these compounds in crabapple leaves. Levels of anthocyanins and the transcript abundances of the anthocyanin biosynthetic gene, dihydroflavonol 4-reductase (McDFR) and the flavonol biosynthetic gene, flavonol synthase (McFLS), were assessed during the leaf development in two crabapple cultivars, 'Royalty' and 'Flame'. The concentrations of anthocyanins and flavonols correlated with leaf color and we propose that the expression of McDFR and McFLS influences their accumulation. Further studies showed that overexpression of McDFR, or silencing of McFLS, increased anthocyanin production, resulting in red-leaf and red fruit peel phenotypes. Conversely, elevated flavonol production and green phenotypes in crabapple leaves and apple peel were observed when McFLS was overexpressed or McDFR was silenced. These results suggest that the relative activities of McDFR and McFLS are important determinants of the red color of crabapple leaves, via the regulation of the metabolic fate of substrates that these enzymes have in common.
منابع مشابه
Disequilibrium of Flavonol Synthase and Dihydroflavonol-4-Reductase Expression Associated Tightly to White vs. Red Color Flower Formation in Plants
Flower color is the main character throughout the plant kingdom. Though substantial information exists regarding the structural and regulatory genes involved in anthocyanin and flavonol biosynthesis, little is known that what make a diverse white vs. red color flower in natural species. Here, the contents of pigments in seven species from varied phylogenetic location in plants with red and whit...
متن کاملA De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins “Switch-Off” in Olive (Olea europaea L.) Drupes at Different Stages of Maturation
Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits ...
متن کاملThe Flavonoid Pathway Regulates the Petal Colors of Cotton Flower
Although biochemists and geneticists have studied the cotton flower for more than one century, little is known about the molecular mechanisms underlying the dramatic color change that occurs during its short developmental life following blooming. Through the analysis of world cotton germplasms, we found that all of the flowers underwent color changes post-anthesis, but there is a diverse array ...
متن کاملFlavonol Synthase Activity and the Regulation of Flavonol and Anthocyanin Biosynthesis during Flower Development in Dianthus caryophyllus L. (Carnation)
Flavonol synthase (FLS) was demonstrated in crude extracts from flower buds o f Dianthus caryophyllus (carnation). The enzyme catalyzed the conversion o f dihydrokaempferol and dihydroquercetin to kaempferol and quercetin, respectively. The reaction required 2-oxoglutarate, ferrous ion and ascorbate as co-factors and had a pH optimum at about 7.4. The demonstration o f FLS activity allowed comp...
متن کاملAnalysis of flavonoids in flower petals of soybean near-isogenic lines for flower and pubescence color genes.
W1, W3, W4, and Wm genes control flower color, whereas T and Td genes control pubescence color in soybean. W1, W3, Wm, and T are presumed to encode flavonoid 3'5'-hydroxylase (EC 1.14.13.88), dihydroflavonol 4-reductase (EC 1.1.1.219), flavonol synthase (EC 1.14.11.23), and flavonoid 3'-hydroxylase (EC 1.14.13.21), respectively. The objective of this study was to determine the structure of the ...
متن کامل